Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies

Biomaterials. 2002 May;23(9):2063-70. doi: 10.1016/s0142-9612(01)00336-2.

Abstract

Porous rods (6 mm in length and 4 mm in diameter) of calcium polyphosphate (CPP) made by gravity sintering of particles in the size ranges of 45-105, 105-150. and 150-250 microm and with initial volume percent porosity in the range of 35-45% were implanted in the distal femur of New Zealand white rabbits. In an initial experiment, four rabbits implanted with rods made from coarse particles (150-250 microm) were sacrificed at each of the following time points: 2 days, 2 weeks, 6 weeks and 12 weeks. In a subsequent experiment, 10 rabbits were implanted with rods made by sintering 45-105 microm particles and another 10 were made by using particles of 105-150 microm. These rabbits were sacrificed at 6 weeks (five rabbits) and 1 year (five rabbits). No adverse reaction was found histologically at any time point in either experiment. These experiments show that CPP macroporous rods can support bone ingrowth and that between 12 weeks and 1 year, the amount of bones formed is equivalent to the natural bone volume found at similar sites. The degradation of the CPP material is inversely proportional to the original particle size and is rapid initially (within the first 6 weeks) and slows down thereafter. In conclusion, this material seems to promote rapid bone ingrowth and can be tailored to degrade at a given rate in vivo to some degree through appropriate selection of the starting particle size.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Substitutes / chemistry*
  • Bone Substitutes / pharmacology
  • Bone and Bones / metabolism
  • Calcium Phosphates / chemistry*
  • Calcium Phosphates / pharmacology
  • Femur / anatomy & histology
  • Femur / metabolism
  • Prostheses and Implants
  • Rabbits
  • Time Factors

Substances

  • Bone Substitutes
  • Calcium Phosphates
  • alpha-tricalcium phosphate
  • tetracalcium phosphate
  • calcium phosphate, monobasic, anhydrous
  • calcium phosphate
  • calcium phosphate, dibasic, anhydrous