Ambisense sendai viruses are inherently unstable but are useful to study viral RNA synthesis

J Virol. 2002 Jun;76(11):5492-502. doi: 10.1128/jvi.76.11.5492-5502.2002.

Abstract

Ambisense Sendai virus (SeV) was prepared in order to study the control of viral RNA synthesis. In these studies, we found that the relative ratios of genomes/antigenomes formed during infection are largely determined by the relative strengths of the replication promoters, independent of the presence of a functional mRNA start site. We also found that the ability of the viral polymerase (vRdRP) to respond to an mRNA editing site requires prior (re)initiation at an mRNA start site, similar to the acquisition of vRdRP processivity in the absence of nascent chain coassembly. During these studies, the inherent instability of ambisense SeV upon passage in embryonated chicken eggs was noted and was found to be associated with a point mutation in the ambisense mRNA (ambi-mRNA) start site that severely limited its expression. Since the interferon (IFN)-induced antiviral state is mediated in part via double-stranded RNA (dsRNA), the efficiency of the ambi-mRNA poly(A)/stop site was examined. This site was found to operate in a manner similar to that of other SeV mRNA poly(A)/stop sites, i.e., at approximately 95% efficiency. This modest level of vRdRP read-through is apparently tolerable for natural SeV because the potential to form dsRNA during infection remains limited. However, when mRNAs are expressed from ambisense SeV antigenomes, vRdRP read-through of the ambi-mRNA poly(A)/stop site creates a capped transcript that can potentially extend the entire length of the antigenome, since there are no further poly(A)/stop sites here. In support of this hypothesis, loss of ambi-mRNA expression during passage of ambisense SeV stocks in eggs is also characterized by conversion of virus that grows poorly in IFN-sensitive cultures and is relatively IFN sensitive to virus that grows well even in IFN-pretreated cells that restrict vesicular stomatitis virus replication, i.e., the wild-type SeV phenotype. The selection of mutants unable to express ambi-mRNA on passage in chicken eggs is presumably due to increased levels of dsRNA during infection. How natural ambisense viruses may deal with this dilemma is discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chick Embryo
  • Genome, Viral
  • HeLa Cells
  • Humans
  • Interferons / pharmacology
  • RNA, Antisense
  • RNA, Messenger
  • RNA, Viral / biosynthesis*
  • Sendai virus / genetics*
  • Tumor Cells, Cultured

Substances

  • RNA, Antisense
  • RNA, Messenger
  • RNA, Viral
  • Interferons