Signaling mechanisms involved in crystal-induced tissue damage

Curr Opin Rheumatol. 2002 May;14(3):292-7. doi: 10.1097/00002281-200205000-00017.

Abstract

The association of crystal deposition with osteoarthritis and joint destruction is well established. Recent advances in understanding the mechanisms whereby calcium crystals contribute to cartilage damage are highlighted in this review. In vitro studies have shown that when calcium-containing crystals come in contact with cells they cause an influx in Ca 2+ concentration and activation of p42/44 mitogen-activated protein kinases. This is followed by induction of proto-oncogenes (c- fos, c- jun ) and induction of the nuclear transcription factors activator protein-1 and nuclear factor-kappaB, which in turn lead to crystal-induced modulation of normal gene expression. Some of the downstream effects known to date include increased mitogenesis, up-regulation of members of the matrix metalloproteinase family, down-regulation of tissue inhibitor of metalloproteinase-1 and -2 in fibroblasts, induction of neutrophil chemotactic chemokines such as interleukin-8, activation and degranulation of neutrophils, and inhibition of neutrophil apoptosis. Because no known drug prevents or treats the consequences of basic calcium phosphate crystal deposition, an improved understanding of the molecular mechanisms leading to crystal-induced joint degeneration is essential to the development of a rational approach to target the consequences of crystal deposition.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Arthritis / etiology
  • Calcium / chemistry*
  • Calcium / metabolism*
  • Crystallization
  • Humans
  • Osteoarthritis / etiology*
  • Signal Transduction / physiology*

Substances

  • Calcium