Reduced gravitropism in inflorescence stems and hypocotyls, but not roots, of Arabidopsis mutants with large plastids

Physiol Plant. 2002 Apr;114(4):627-636. doi: 10.1034/j.1399-3054.2002.1140417.x.

Abstract

The sites of gravity perception are columella cells in roots and endodermal cells in hypocotyls and inflorescence stems. Since plastids are likely to play a role in graviperception, we investigated gravitropism in plastid mutants of Arabidopsis. Previous studies have shown that the arc6 and arc12 (accumulation and replication of chloroplasts) mutants have an average of two large plastids per leaf mesophyll cell. In this study, we found that these arc mutants have altered plastid morphology throughout the entire plant body, including the cells involved in gravity perception. There were no major differences in total starch content per cell in endodermal and columella cells of the wild-type (WT) compared to arc6 and arc12 as assayed by iodine staining. Thus, the total mass of plastids per cell in arc6 and arc12 is similar to their respective WT strains. Results from time course of curvature studies demonstrated that the plastid mutation affected gravitropism only of inflorescence stems and hypocotyls, but not roots. Thus, roots appear to have different mechanisms of gravitropism compared to stems and hypocotyls. Time course of curvature studies with light-grown seedlings were performed in the presence of latrunculin B (Lat-B), an actin-depolymerizing drug. Lat-B promoted gravitropic curvature in hypocotyls of both the WT and arc6 but had little or no effect on gravitropism in roots of both strains. These results suggest that F-actin is not required for hypocotyl gravitropism.