Synchronization of noisy systems by stochastic signals

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):284-92. doi: 10.1103/physreve.60.284.

Abstract

We study, in terms of synchronization, the nonlinear response of noisy bistable systems to a stochastic external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instantaneously synchronize the switching process of the system. We also show that synchronization is most pronounced at an optimal noise level-this effect connects this phenomenon with aperiodic stochastic resonance. Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike train.