Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity

J Biol Chem. 2002 Jun 7;277(23):20343-54. doi: 10.1074/jbc.M201103200. Epub 2002 Mar 25.

Abstract

A 4.4-kb HindIII fragment, encoding an unusual rubredoxin (denoted RubA), a homolog of the Synechocystis sp. PCC 6803 gene slr2034 and Arabidopsis thaliana HCF136, and the psbEFLJ operon, was cloned from the cyanobacterium Synechococcus sp. PCC 7002. Inactivation of the slr2034 homolog produced a mutant with no detectable phenotype and wild-type photosystem (PS) II levels. Inactivation of the rubA gene of Synechococcus sp. PCC 7002 produced a mutant unable to grow photoautotrophically. RubA and PS I electron transport activity were completely absent in the mutant, although PS II activity was approximately 80% of the wild-type level. RubA contains a domain of approximately 50 amino acids with very high similarity to the rubredoxins of anaerobic bacteria and archaea, but it also contains a region of about 50 amino acids that is predicted to form a flexible hinge and a transmembrane alpha-helix at its C terminus. Overproduction of the water-soluble rubredoxin domain in Escherichia coli led to a product with the absorption and EPR spectra of typical rubredoxins. RubA was present in thylakoid but not plasma membranes of cyanobacteria and in chloroplast thylakoids isolated from spinach and Chlamydomonas reinhardtii. Fractionation studies suggest that RubA might transiently associate with PS I monomers, but no evidence for an association with PS I trimers or PS II was observed. PS I levels were significantly lower than in the wild type ( approximately 40%), but trimeric PS I complexes could be isolated from the rubA mutant. These PS I complexes completely lacked the stromal subunits PsaC, PsaD, and PsaE but contained all membrane-intrinsic subunits. The three missing proteins could be detected immunologically in whole cells, but their levels were greatly reduced, and degradation products were also detected. Our results indicate that RubA plays a specific role in the biogenesis of PS I.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Cell Membrane / metabolism
  • Cloning, Molecular
  • Cyanobacteria / genetics*
  • DNA Primers
  • Electron Spin Resonance Spectroscopy
  • Genes, Bacterial*
  • Genetic Complementation Test
  • Molecular Sequence Data
  • Photosynthetic Reaction Center Complex Proteins / metabolism*
  • Rubredoxins / chemistry
  • Rubredoxins / genetics*
  • Rubredoxins / metabolism
  • Sequence Homology, Amino Acid
  • Spectrometry, Fluorescence

Substances

  • DNA Primers
  • Photosynthetic Reaction Center Complex Proteins
  • Rubredoxins