The trifluoromethoxycarbonyl radical CF(3)OCO

Chemistry. 2002 Mar 1;8(5):1189-95. doi: 10.1002/1521-3765(20020301)8:5<1189::aid-chem1189>3.0.co;2-j.

Abstract

The trifluoromethoxycarbonyl radical CF(3)OCO is formed by low-pressure flash pyrolysis of CF(3)OC(O)OOC(O)OCF(3) or CF(3)OC(O)OOCF(3) in the presence of a high excess of CO and subsequent quenching of the reaction mixture as a CO matrix. The IR and UV spectra are recorded, and a DFT study of CF(3)OCO is presented. According to the quantum chemical calculations, two rotamers should exist with an energy difference between the isomers equal or larger than 12 kJmol(-1). By comparing calculated and observed IR spectra, the presence of the trans form of the CF(3)OCO radical is identified in the matrix. The reaction of CF(3)O radicals with CO leading to CF(3)OCO is calculated to be exothermic by 33.6 kJmol(-1). CF(3)OCO dissociates when irradiated by UV light with lambda<370 nm into CF(3) radicals and CO(2). Experiments show that CF(3) radicals do not react with solid CO to give CF(3)CO.