Coreceptor utilization of HIV type 1 subtype E viral isolates from Thai men with HIV type 1-infected and uninfected wives

AIDS Res Hum Retroviruses. 2002 Jan 1;18(1):1-11. doi: 10.1089/088922202753394664.

Abstract

HIV-1 coreceptors CCR5 and CXCR4 play an important role in viral entry and pathogenesis. To better understand the role of viral tropism in HIV-1 transmission, we examined the coreceptor utilization of viral isolates obtained from men enrolled in a study of heterosexual transmission in northern Thailand. Viral isolates were obtained from HIV-1-positive males who had either HIV-1-infected spouses (RM; n = 5) or HIV-1-uninfected spouses (HM; n = 10). Viral isolates from 1 of the 5 RM males and 2 of the 10 HM males were CCR5 tropic, whereas isolates from 3 RM males and 6 of the HM male isolates were CXCR4 tropic. Of the nine X4-tropic isolates, seven also used at least one of the following coreceptors: CCR8, CCR1, CCR2b, or CX3CR1, and none employed CCR5 as an additional coreceptor. More importantly, three isolates, RM-15, HM-13, and HM-16 (one from a transmitter and two from nontransmitter), did not infect GHOST4.cl.34 cells expressing any of the known coreceptors. Further analysis using MAGI-plaque assays, which allow visualization of infected cells, revealed that RM-15 had low numbers of infected cells in MAGI-R5 and MAGI-X4 cultures, whereas HM-13 and HM-16 had high levels of plaques in MAGI-X4 cultures. Replication kinetics using activated lymphocytes revealed that these three isolates replicated in CCR5(+/+) as well as CCR5(-/-) peripheral blood mononuclear cells, suggesting that these isolates did not have an absolute requirement of CCR5 for viral entry. All three isolates were sensitive to the X4-antagonistic compounds T-22 and AMD3100. Analysis of the C2V3 region did not reveal any significant structural differences between any of the Thai subtype E isolates. Thus, there was no association between the pattern of coreceptor usage and transmissibility among these subtype E HIV-1 isolates.

Publication types

  • Comparative Study

MeSH terms

  • Amino Acid Sequence
  • CX3C Chemokine Receptor 1
  • Chemokine CCL2 / metabolism
  • Chemokines, CC / metabolism
  • Consensus Sequence
  • Disease Transmission, Infectious
  • HIV Envelope Protein gp120 / chemistry
  • HIV Infections / transmission
  • HIV Infections / virology*
  • HIV-1 / classification
  • HIV-1 / metabolism*
  • HIV-1 / pathogenicity
  • Heterosexuality
  • Humans
  • Male
  • Molecular Sequence Data
  • Peptide Fragments / chemistry
  • Receptors, CCR1
  • Receptors, CCR2
  • Receptors, CCR5 / metabolism
  • Receptors, CCR8
  • Receptors, CXCR4 / metabolism
  • Receptors, Chemokine / metabolism
  • Receptors, Cytokine / metabolism
  • Receptors, HIV / chemistry
  • Receptors, HIV / metabolism*
  • Thailand
  • Virus Replication

Substances

  • CCR1 protein, human
  • CCR2 protein, human
  • CCR8 protein, human
  • CX3C Chemokine Receptor 1
  • Chemokine CCL2
  • Chemokines, CC
  • HIV Envelope Protein gp120
  • HIV envelope protein gp120 (305-321)
  • Peptide Fragments
  • Receptors, CCR1
  • Receptors, CCR2
  • Receptors, CCR5
  • Receptors, CCR8
  • Receptors, CXCR4
  • Receptors, Chemokine
  • Receptors, Cytokine
  • Receptors, HIV