A structural model of the catalytic subunit-regulatory subunit dimeric complex of the cAMP-dependent protein kinase

J Biol Chem. 2002 Apr 5;277(14):12423-31. doi: 10.1074/jbc.M110298200. Epub 2002 Jan 17.

Abstract

Previous neutron scattering studies elaborated the topographical relationship of the regulatory (R(IIalpha)) and catalytic (C(alpha)) subunits of the cAMP-dependent protein kinase. We present here the results of a set of computations that lead to an atomic model of the cAMP-dependent protein kinase heterodimer, Delta(1-91)R(IIalpha)-C(alpha). The first step in the modeling utilized the crystal structures for the porcine C(alpha) and bovine Delta(1-90)R(Ialpha) or rat Delta(1-111)R(IIbeta), to homology-model structures of the species and isoforms that had been used in the neutron scattering experiments (bovine C(alpha) subunit and murine Delta(1-91)R(IIalpha) subunit, respectively). A docking procedure, constrained by the dimensions and positions of the ellipsoids in the neutron-derived R-C model as well as mutagenesis data, was used to develop "best fit" models for the heterodimer. Simulated annealing, molecular dynamics, and energy minimization were then used to refine the side chain packing at the heterodimer interface. For comparison, the calculations were done using the homology models derived from both the R(Ialpha) and R(IIbeta) crystal structures. Both resultant models had many similarities. Each predicted similar interfaces. The R(Ialpha)-based model has 25% more hydrogen bonds than that based on R(IIbeta), with seven of these potential bonds in common. The distribution of hydrophobic, polar, and charged residues at the interface was similar for both models, with a distribution more characteristic of the exposed surface residues than those in the protein interior. The calculated interface area in each is relatively small (<2000 A(2)). The R(Ialpha)-based model, however, has a significantly better fit with the scattering data and is therefore the one of distinctly higher probability. With its small interface area that has a high proportion of charged and polar residues, the complex appears poised for dissociation, and each subunit existing as a stable entity. This result is consistent with the known physiological events required for cAMP-dependent activation of the kinase.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Amino Acids / chemistry
  • Animals
  • Catalysis
  • Catalytic Domain
  • Cattle
  • Cyclic AMP-Dependent Protein Kinases / chemistry*
  • Cyclic AMP-Dependent Protein Kinases / metabolism
  • Dimerization
  • Ions
  • Mice
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Binding
  • Protein Conformation
  • Protein Isoforms
  • Rats
  • Sequence Homology, Amino Acid

Substances

  • Amino Acids
  • Ions
  • Protein Isoforms
  • Cyclic AMP-Dependent Protein Kinases

Associated data

  • PDB/1KMU
  • PDB/1KMW