Evaluation of environmental effects on metal transport from capped contaminated sediment under conditions of submarine groundwater discharge

Environ Sci Technol. 2001 Nov 15;35(22):4549-55. doi: 10.1021/es001763p.

Abstract

Previous studies conducted in our laboratories have shown that submarine groundwater discharge (SGD) can significantly increase metal fluxes from capped contaminated sediment to the overlying water. Five columns were set up in the laboratory to evaluate the effects of environmental factors such as groundwater pH, sediment depth, and groundwater flow rate on metal transport from capped contaminated sediment under conditions of SGD. Acidified groundwater discharge was shown to enhance the mobility of all tested metals except Mo. Although much of the released metal was adsorbed by the capping material, significant increases of initial or steady-state fluxes to the overlying water were observed for Ni, Cu, Zn, Cd, Pb, and Mn. Additional sediment depth enhanced steady-state fluxes for all tested metals except Mo, Cd, and Pb. Increased SGD rates did not significantly change the average metal concentration in the outflow to the overlying water for most metals; however, all metal releases were higher due to the greater flow at increased SGD rates. The residence time and the redox conditions may be important in evaluating environmental effects on capping efficiency.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adsorption
  • Environmental Monitoring
  • Geologic Sediments / chemistry*
  • Hydrogen-Ion Concentration
  • Metals, Heavy / analysis*
  • Oxidation-Reduction
  • Water Movements

Substances

  • Metals, Heavy