Evaluation of an (111)In-DOTA-rhenium cyclized alpha-MSH analog: a novel cyclic-peptide analog with improved tumor-targeting properties

J Nucl Med. 2001 Dec;42(12):1847-55.

Abstract

The aim of this study was to examine the effect of rhenium-mediated peptide cyclization on melanoma targeting, biodistribution, and clearance kinetics of the alpha-melanocyte-stimulating hormone (alpha-MSH) analog 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) coupled ReO-cyclized [Cys(3,4,10),D-Phe(7)]alpha-MSH(3-13) (DOTA-ReCCMSH).

Methods: DOTA-ReCCMSH was compared with its reduced nonmetalated linear homolog, DOTA-CCMSH, and an analog in which rhenium cyclization was replaced by disulfide bond cyclization, DOTA-[Cys(4,10),D-Phe(7)]alpha-MSH(4-13) (CMSH). DOTA was also conjugated to the amino terminus of one of the highest-affinity alpha-MSH receptor-binding peptides, [Nle(4),D-Phe(7)]alpha-MSH (NDP), as a linear peptide standard. The DOTA-conjugated alpha-MSH analogs were radiolabeled with (111)In and examined for their in vitro receptor-binding affinity with B16/F1 murine melanoma cells, and their in vivo biodistribution properties were evaluated and compared in melanoma tumor-bearing C57 mice.

Results: The tumor uptake values of (111)In-DOTA-ReCCMSH were significantly higher than those of the other closely related (111)In-DOTA-alpha-MSH conjugates. Even at 24 h after injection, a comparison of the tumor uptake values for (111)In-DOTA-coupled ReCCMSH (4.86 +/- 1.52 percentage injected dose [%ID]/g), CCMSH (1.91 +/- 0.56 %ID/g), CMSH (3.09 +/- 0.32 %ID/g), and NDP (2.47 +/- 0.79 %ID/g) highlighted the high tumor retention property of ReCCMSH. Rhenium-coordinated cyclization resulted in less renal radioactivity accumulation of (111)In-DOTA-ReCCMSH (8.98 +/- 0.82 %ID/g) than of (111)In-DOTA-CCMSH (63.2 +/- 15.6 %ID/g), (111)In-DOTA-CMSH (38.4 +/- 3.6 %ID/g), and (111)In-DOTA-NDP (12.0 +/- 1.96 %ID/g) at 2 h after injection and significantly increased its clearance into the urine (92 %ID at 2 h after injection). A high radioactivity uptake ratio of tumor to normal tissue was obtained for (111)In-DOTA-ReCCMSH (e.g., 489, 159, 100, and 49 for blood, muscle, lung, and liver, respectively, at 4 h after injection).

Conclusion: The novel ReO-coordinated cyclic structure of DOTA-ReCCMSH contributes significantly to its enhanced tumor-targeting and renal clearance properties and makes DOTAReCCMSH an excellent candidate for melanoma radiodetection and radiotherapy.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Female
  • Indium Radioisotopes / therapeutic use*
  • Melanoma, Experimental / diagnostic imaging*
  • Mice
  • Mice, Inbred C57BL
  • Organometallic Compounds / therapeutic use*
  • Radionuclide Imaging
  • Radiopharmaceuticals / chemistry*
  • Radiopharmaceuticals / therapeutic use
  • Rhenium
  • Tissue Distribution
  • alpha-MSH / analogs & derivatives
  • alpha-MSH / therapeutic use*

Substances

  • 1,4,7,10-tetraazacyclododecane 1,4,7,10-tetraacetic acid (Cys(3,4,10),D-Phe(7))alpha-MSH(3-13)
  • Indium Radioisotopes
  • Organometallic Compounds
  • Radiopharmaceuticals
  • alpha-MSH
  • Rhenium