The first in vivo observation of (13)C-(15)N coupling in mammalian brain

J Magn Reson. 2001 Dec;153(2):193-202. doi: 10.1006/jmre.2001.2432.

Abstract

[5-(13)C,(15)N]Glutamine, with (1)J((13)C-(15)N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by (13)C MRS at 4.7 T. The brain [5-(13)C]glutamine peak consisted of the doublet from [5-(13)C,(15)N]glutamine and the center [5-(13)C,(14)N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-(13)C,(15)N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-(13)C,(15)N]glutamine was formed by glial uptake of released neurotransmitter [5-(13)C]glutamate and its reaction with (15)NH(3) catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively (13)C-enriched by intravenous [2,5-(13)C]glucose infusion to (13)C-label whole-brain glutamate C5, followed by [(12)C]glucose infusion to chase (13)C from the small and rapidly turning-over glial glutamate pool, leaving (13)C mainly in the neurotransmitter [5-(13)C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-(13)C,(15)N]glutamine arises from a coupling between (13)C of neuronal origin and (15)N of glial origin. Measurement of the rate of brain [5-(13)C,(15)N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain / metabolism*
  • Carbon Isotopes
  • Glutamic Acid / metabolism
  • Glutamine / metabolism*
  • Magnetic Resonance Spectroscopy / methods*
  • Male
  • Nitrogen Isotopes
  • Rats
  • Rats, Wistar

Substances

  • Carbon Isotopes
  • Nitrogen Isotopes
  • Glutamine
  • Glutamic Acid