Kranz anatomy is not essential for terrestrial C4 plant photosynthesis

Nature. 2001 Nov 29;414(6863):543-6. doi: 10.1038/35107073.

Abstract

An important adaptation to CO2-limited photosynthesis in cyanobacteria, algae and some plants was development of CO2-concentrating mechanisms (CCM). Evolution of a CCM occurred many times in flowering plants, beginning at least 15-20 million years ago, in response to atmospheric CO2 reduction, climate change, geological trends, and evolutionary diversification of species. In plants, this is achieved through a biochemical inorganic carbon pump called C4 photosynthesis, discovered 35 years ago. C4 photosynthesis is advantageous when limitations on carbon acquisition are imposed by high temperature, drought and saline conditions. It has been thought that a specialized leaf anatomy, composed of two, distinctive photosynthetic cell types (Kranz anatomy), is required for C4 photosynthesis. We provide evidence that C4 photosynthesis can function within a single photosynthetic cell in terrestrial plants. Borszczowia aralocaspica (Chenopodiaceae) has the photosynthetic features of C4 plants, yet lacks Kranz anatomy. This species accomplishes C4 photosynthesis through spatial compartmentation of photosynthetic enzymes, and by separation of two types of chloroplasts and other organelles in distinct positions within the chlorenchyma cell cytoplasm.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbon Dioxide / metabolism
  • Chenopodiaceae / cytology
  • Chenopodiaceae / physiology*
  • Photosynthesis / physiology*
  • Plant Leaves / cytology
  • Plant Leaves / physiology*

Substances

  • Carbon Dioxide