Endothelial cell PAF synthesis following thrombin stimulation utilizes Ca(2+)-independent phospholipase A(2)

Biochemistry. 2001 Dec 11;40(49):14921-31. doi: 10.1021/bi0156153.

Abstract

Platelet activating factor (PAF) is a potent lipid autocoid that is rapidly synthesized and presented on the surface of endothelial cells following thrombin stimulation. PAF production may occur via de novo synthesis or by the combined direct action of phospholipase A(2) (PLA(2)) and acetyl-CoA:lyso-PAF acetyltransferase or via the remodeling pathway. This study was undertaken to define the role of PLA(2) and plasmalogen phospholipid hydrolysis in PAF synthesis in thrombin-treated human umbilical artery endothelial cells (HUAEC). Basal PLA(2) activity in HUAEC was primarily found to be Ca(2+)-independent (iPLA(2)), membrane-associated, and selective for arachidonylated plasmenylcholine substrate. Thrombin stimulation of HUAEC resulted in a preferential 3-fold increase in membrane-associated iPLA(2) activity utilizing plasmenylcholine substrates with a minimal increase in activity with alkylacyl glycerophospholipids. No change in cystolic iPLA(2) activity in thrombin-stimulated HUAEC was observed. The thrombin-stimulated activation of iPLA(2) and associated hydrolysis of plasmalogen phospholipids was accompanied by increased levels of arachidonic acid (from 1.1 +/- 0.1 to 2.8 +/- 0.1%) and prostacyclin release (from 38 +/- 12 to 512 +/- 24%) as well as an increased level of production of lysoplasmenylcholine (from 0.6 +/- 0.1 to 2.1 +/- 0.3 nmol/mg of protein), lysophosphatidylcholine (from 0.3 +/- 0.1 to 0.6 +/- 0.1 nmol/mg of protein), and PAF (from 790 +/- 108 to 3380 +/- 306 dpm). Inhibition of iPLA(2) with bromoenol lactone resulted in inhibition of iPLA(2) activity, plasmalogen phospholipid hydrolysis, production of choline lysophospholipids, and PAF synthesis. These data indicate that PAF production requires iPLA(2) activation in thrombin-stimulated HUAEC and may occur through the CoA-independent transacylase remodeling pathway rather than as a direct result of the PLA(2)-catalyzed hydrolysis of membrane alkylacyl glycerophosphocholine.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Chromatography, High Pressure Liquid
  • Dose-Response Relationship, Drug
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / drug effects*
  • Endothelium, Vascular / metabolism
  • Group VI Phospholipases A2
  • Humans
  • Membrane Lipids / metabolism
  • Naphthalenes / pharmacology
  • Phosphodiesterase Inhibitors / pharmacology
  • Phospholipases A / metabolism*
  • Phospholipids / metabolism
  • Platelet Activating Factor / biosynthesis*
  • Pyrones / pharmacology
  • Thrombin / pharmacology*

Substances

  • Membrane Lipids
  • Naphthalenes
  • Phosphodiesterase Inhibitors
  • Phospholipids
  • Platelet Activating Factor
  • Pyrones
  • 6-(bromomethylene)tetrahydro-3-(1-naphthaleneyl)-2H-pyran-2-one
  • Phospholipases A
  • Group VI Phospholipases A2
  • PLA2G6 protein, human
  • Thrombin