Nematode Parasitism Genes

Annu Rev Phytopathol. 2000 Sep:38:365-396. doi: 10.1146/annurev.phyto.38.1.365.

Abstract

The ability of nematodes to live on plant hosts involves multiple parasitism genes. The most pronounced morphological adaptations of nematodes for plant parasitism include a hollow, protrusible stylet (feeding spear) connected to three enlarged esophageal gland cells that express products that are secreted into plant tissues through the stylet. Reverse genetic and expressed sequence tag (EST) approaches are being used to discover the parasitism genes expressed in nematode esophageal gland cells. Some genes cloned from root-knot (Meloidogyne spp.) and cyst (Heterodera and Globodera spp.) nematodes have homologues reported in genomic analyses of Caenorhabditis elegans and animal-parasitic nematodes. To date, however, the candidate parasitism genes endogenous to the esophageal glands of plant nematodes (such as the ß-1,4-endoglucanases) have their greatest similarity to microbial genes, prompting speculation that genes for plant parasitism by nematodes may have been acquired by horizontal gene transfer.

Keywords: functional genomics; gene evolution; horizontal gene transfer; plant resistance; secretory glands.