Substituent Effects on Site Selectivity (C=C vs C=N) in Heterocumulene-Heterodiene [4 + 2] Cycloadditions: Density Functional and Semiempirical AM1 Molecular Orbital Calculations

J Org Chem. 1997 Nov 28;62(24):8497-8502. doi: 10.1021/jo9713161.

Abstract

The effect of substituents on the site selectivity (C=C vs C=N) in the [4 + 2] cycloaddition between heterocumulenes (ketene imines) 2a-g with heterodienes (acroleines 9a-n and 4-acylfuran-2,3-diones 1a-d) is treated by semiempirical AM1 molecular orbital and density functional calculations using Becke's three-parameter hybrid method (B3LYP/6-31G). For some reactions calculations were also done at the B3LYP/6-31+G level of theory. For reaction of the oxa 1,3-dienes with ketene imines unsubstituted at the terminal carbon invariably addition across the C=C heterocumulene double bond has a lower activation energy than addition across the C=N double bond. Substitution of methyl or especially phenyl groups at the ketene imine C-terminus leads to a reversal of the respective activation energies. Incorporation of the oxa 1,3-diene system into the heterocyclic dione 1 substantially enhances the reactivity ( approximately 10 kcal mol(-1) lower activation energies) as compared to similarly substituted acroleins. At the DFT level of theory all reactions are found to proceed via a concerted asynchronous mechanism.