Crystal Structures and Magnetic Properties of Novel [Ln(III)Cu(II)(4)] (Ln = Gd, Dy, Ho) Pentanuclear Complexes. Topology and Ferromagnetic Interaction in the Ln(III)-Cu(II) Pair

Inorg Chem. 1996 Dec 4;35(25):7384-7393. doi: 10.1021/ic960524t.

Abstract

The first pentanuclear complexes of formula {Dy[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (1), {Ho[Cu(apox)][Cu(apox)(H(2)O)](3)}[PF(6)](3).4.5H(2)O (2), {Gd[Cu(apox)](2)[Cu(apox)(H(2)O)](2)}[ClO(4)](3).7H(2)O (3) and {Gd[Cu(apox)][Cu(apox) (H(2)O)](3)}[PF(6)](3).4.5H(2)O (4) (H(2)apox = N,N'-bis(3-aminopropyl)oxamide) have been synthesized. The crystal structures of complexes 1 and 2 have been determined by X-ray diffraction methods. Complexes 3 and 4 are isostructural with 1 and 2, respectively. Crystallographic data are as follows: 1 and 3, monoclinic, space group C2/c and Z = 4, with a = 14.646(6) Å, b = 29.496(7) Å, c = 16.002(7) Å, and beta = 111.76(2) degrees for 1 and a = 14.523(6) Å, b = 29.441(6) Å, c = 15.925(8) Å, and beta = 111.90(4) degrees for 3; 2 and 4, triclinic, P&onemacr;, and Z = 2, with a = 14.346(2) Å, b = 14.454(2) Å, c = 18.107(4) Å, alpha = 90.95(2) degrees, beta = 110.75(2) degrees, and gamma = 106.77(2) degrees for 2 and a = 14.365(6) Å, b = 14.496(5) Å, c = 18.172(7) Å, alpha = 91.27(3) degrees, beta = 110.74(3) degrees, and gamma = 106.67(3) degrees for 4. A tripositive ion is present in these structures, the electroneutrality being achieved by three uncoordinated perchlorate (1) or hexafluorophosphate (2) anions. The lanthanide cations are eight-coordinate with a pseudo-square-antiprismatic environment formed by carbonyl oxygen atoms from two [Cu(apox)] and two Cu(apox)(H(2)O)] (1) and one [Cu(apox)] and three [Cu(apox)(H(2)O)] (2) bidentate ligands. The temperature dependence of the magnetic susceptibility of complexes 1-4 was investigated in the range 1.8-300 K. The ligand-field effect, as well as the mixing of the free-ion states in Dy(III) and Ho(III), make extremely difficult the analysis of the overall antiferromagnetic interaction which is observed for complexes 1 and 2. The magnetic susceptibility data for complexes 3 and 4 have shown that the ground-state spin for the [Gd(III)Cu(II)(4)] unit is S = 11/2, the Gd(III)-Cu(II) interaction being ferromagnetic with an interaction parameter J(GdCu) = 0.85 cm(-)(1) (the interaction Hamiltonian is of the form H = -JS(A).S(B)). The field dependence of the magnetization at 2 K of 3 and 4 confirms the nature of the ground state and of the Gd(III)-Cu(II) interaction. The influence of the topology and of the type of bridging ligand on the nature and magnitude of the magnetic interaction in the Gd(III)-Cu(II) pair is analyzed and discussed in light of available magnetostructural data.