Separation of some mono-, di- and tri-unsaturated fatty acids containing 18 carbon atoms by high-performance liquid chromatography and photodiode array detection

J Chromatogr B Biomed Sci Appl. 2001 Aug 25;760(1):165-78. doi: 10.1016/s0378-4347(01)00266-3.

Abstract

Positional and geometric isomers of mono-, di- and tri-unsaturated fatty acids containing 18 carbon atoms were separated on commercially available reversed-phase columns in gradient systems composed of acetonitrile and water, utilizing photodiode array detection. The biological samples were hydrolyzed with 2 M NaOH for 35-40 min at 85-90 degrees C. After cooling, the hydrolysates were acidified with 4 M HCl and the free fatty acids were extracted with dichloromethane. The organic solvent was removed in a gentle stream of argon. The fatty acids were determined after pre-column derivatization with dibromacetophenone in the presence of triethylamine. The reaction components were mixed and reacted for 2 h at 50 degrees C. Separations of derivatized fatty acids were performed on two C18 columns (Nova Pak C18, 4 microm, 250x4.6 mm, Waters) by binary or ternate gradient programs and UV detection at 254 and 235 nm. The geometric and positional isomers of some unsaturated fatty acids were substantially retained on the C18 columns and were distinct from some saturated fatty acids, endogenous substances in biological samples or background interference. Only slight separation of critical pairs of cis-9 C18:1/cis-11 C18:1 and cis-6 C18:1/trans-11 C18:1 was obtained. A ternate gradient program can be used for complete fractionation of a mixture of conjugated linoleic acid isomers (CLA) from cis-9, cis-12 and trans-9, trans-12 isomers of C18:2. The CLA isomers in the effluent were monitored at 235 nm. The CLA isomers were differentiated from saturated and unsaturated fatty acids using a photodiode array detector. The utility of the method was demonstrated by evaluating the fatty acid composition of duodenal digesta, rapeseed and maize oils.

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid / methods*
  • Fatty Acids, Unsaturated / isolation & purification*
  • Reproducibility of Results
  • Ruminants
  • Sensitivity and Specificity
  • Spectrophotometry, Ultraviolet / methods*

Substances

  • Fatty Acids, Unsaturated