Sorption and desorption behavior of organotin compounds in sediment-pore water systems

Environ Sci Technol. 2001 Aug 1;35(15):3151-7. doi: 10.1021/es010010f.

Abstract

Sediments contaminated with organotin compounds (OTs), in particular triorganotins (TOTs), are abundant in areas with high shipping activities. To assess the possible remobilization of these highly toxic compounds from such sediments, a profound understanding of their sorption/desorption behavior is necessary. In this work the extent and reversibility of sorption of OTs to sediments has been investigated using contaminated freshwater harbor sediments and two certified OT containing marine sediments. Experiments conducted with perdeuterated OTs showed that sorption of OTs to sediments is a fast and reversible process involving primarily particulate organic matter (POM) constituents as sorbents. The organic carbon-normalized sediment-water distribution ratios (DOC, expressed in L/kgOC) determined in the laboratory were consistent with in-situ DOCs obtained from OT concentrations measured in sediment and pore water samples from two dated sediment cores. For both butyl- and phenyltin compounds the log DOC values were in the range of 4.7-6.1, and the following sequence was observed: DOC (tri-OT) > or = DOC (di-OT) > or = DOC (mono-OT). However, the differences were much less pronounced than would have been expected for hydrophobic partitioning of the corresponding compounds into POM. These results support our hypothesis from earlier work with dissolved humic acids that OT sorption to sediments occurs primarily by reversible formation of (innerspere) complexes between the tin atom and carboxylate and phenolate ligands present in POM. Because of the high DOC values (i.e. log DOC > or = 4) the diffusion of OTs from deeper sediments to the surface will be rather slow, and thus a major release from undisturbed sediments is not expected. However, because OTs readily desorb, any resuspension of contaminated sediments (e.g., by the tide, storms or dredging activities) will lead to enhanced OT concentrations in the overlaying water column. Furthermore, in contrastto polycyclic aromatic hydrocarbons (PAH) where large fractions may be tightly bound (in)to soot or other carbonaceous materials, OTs will be more readily bioavailable due to the fast and reversible sorption/desorption behavior.

MeSH terms

  • Absorption
  • Biological Availability
  • Environmental Monitoring
  • Geologic Sediments / chemistry*
  • Ligands
  • Organotin Compounds / chemistry*
  • Water Movements
  • Water Pollutants, Chemical / analysis*

Substances

  • Ligands
  • Organotin Compounds
  • Water Pollutants, Chemical