Structural evidence for multiple transport mechanisms through the Golgi in the pancreatic beta-cell line, HIT-T15

Biochem Soc Trans. 2001 Aug;29(Pt 4):461-7. doi: 10.1042/bst0290461.

Abstract

Accurate data on the three-dimensional architecture of the Golgi is prerequisite for evaluating the mechanisms of transit through this organelle. Here we detail the structure of the Golgi ribbon within part of an insulin-secreting cell in three dimensions at approximately 6 nm resolution. Rapid freezing, freeze-substitution and electron tomography were employed. The Golgi in this region is composed of seven cisternae. The cis-most element is structurally intermediate between the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) and the cis-most cisterna characterized in three dimensions at high resolution in a normal rat kidney cell [Ladinsky, Mastronarde, McIntosh, Howell and Staehelin (1999) J. Cell Biol. 144, 1135-1149]. There are three trans-cisternae that demonstrate morphological and functional variation. The membrane surface areas and volumes of these elements decrease from cis to trans. The two trans-most cisternae are dissociated from the stack and are fragmented by tubulation. ER closely adheres to and inserts between individual trans-cisternae. Many of the 2119 small, clathrin-negative vesicles that are in close proximity to the Golgi fill the region where trans-cisternae have moved out of register with the ribbon. These data provide evidence that cisternal progression/maturation, trafficking via membrane tubules and vesicle-mediated transport act in concert in the same region of the Golgi ribbon, and suggest an important role for the ER in regulating membrane dynamics at the trans-Golgi.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biological Transport
  • Cell Fractionation
  • Cell Line
  • Golgi Apparatus / physiology*
  • Islets of Langerhans / physiology*
  • Islets of Langerhans / ultrastructure
  • Microscopy, Electron
  • Models, Structural
  • Signal Transduction / physiology*
  • trans-Golgi Network / physiology
  • trans-Golgi Network / ultrastructure