Kinetics of the cis,cis to trans,trans isomerization of 1,1,2,2,5,5,6,6-octamethyl-1,2,5,6-tetrasilacycloocta-3,7-diene

J Org Chem. 2001 Aug 10;66(16):5284-90. doi: 10.1021/jo0014820.

Abstract

The kinetics of the ruthenium-promoted cis,cis to trans,trans isomerization of 1,1,2,2,5,5,6,6-octamethyl-1,2,5,6-tetrasilacycloocta-3,7-diene were investigated. Incubation of a ruthenium alkylidene complex, (Cy(3)P)RuCl(2)(==CHPh)Ru(p-cymene)Cl(2), in CD(2)Cl(2) for 5 days at 40 degrees C afforded a catalytically active ruthenium species that was shown to be responsible for promoting the isomerization. The isomerization was observed to proceed in two steps: (1) conversion of the starting cis,cis isomer to a proposed cis,trans intermediate and (2) subsequent conversion of the intermediate to the product trans,trans isomer. Kinetic studies demonstrated that the two steps are first-order with respect to the concentrations of the cis,cis isomer, the intermediate, and the ruthenium alkylidene complex. The data were further consistent with a mechanism involving bimolecular hydride addition-elimination during the two isomerization steps.