High-speed solution switching using piezo-based micropositioning stages

IEEE Trans Biomed Eng. 2001 Jul;48(7):806-14. doi: 10.1109/10.930905.

Abstract

Motion-induced vibration is a critical limitation in high-speed micropositioning stages used to achieve solution switching. Controlled rapid solution switching is used to study the fast activation and deactivation kinetics of ligand-gated ion-channel populations isolated in excised membrane patches--such studies are needed to understand fundamental mechanisms that mediate synaptic excitation and inhibition in the central nervous system. However, as the solution-switching speed is increased, vibration induced in the piezo-based positioning stages can result in undesired, repeated, ligand application to the excised patch. The article describes a method to use knowledge of the piezo-stage's vibrational dynamics to compensate for and reduce these unwanted vibrations. The method was experimentally verified using an open-electrode technique, and fast solution switching (100 micros range) was achieved.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Models, Neurological*
  • Patch-Clamp Techniques
  • Signal Processing, Computer-Assisted
  • Vibration