Oxygen tension modulates the expression of cytokine receptors, transcription factors, and lineage-specific markers in cultured human megakaryocytes

Exp Hematol. 2001 Jul;29(7):873-83. doi: 10.1016/s0301-472x(01)00658-0.

Abstract

Objective: We have recently reported that 20% O2 significantly enhances total megakaryocyte (Mk) number, polyploidy, and proplatelet formation compared to 5% O2 in culture. In order to further elucidate the regulatory role of pO2 on megakaryocytopoiesis, we conducted a kinetic study of the expression of surface markers CD41a and CD42a; receptors for thrombopoietin (TPO), interleukin-3 (IL-3), and Flt3-ligand; the glutamate receptor of the N-methyl-D-aspartate subtype 1 (NMDAR1); and transcription factors GATA-1, NF-E2, and E2F-1.

Materials and methods: Mks were generated from mobilized peripheral blood (PB) CD34+ cells from normal donors in serum-free medium with TPO, IL-3, and Flt3-ligand at 20% and 5% O2. Quantitative assessment of Mk surface receptors and nuclear transcription factors was performed using multiparameter flow cytometry. mRNA levels of the nuclear transcription factors GATA-1 and NF-E2 were evaluated using RT-PCR.

Results: The proportions of cells expressing the early Mk marker CD41a and the late Mk marker CD42a at day 15 were 4 and 5 times higher, respectively, at 20% O2. CD41a and CD42a protein levels per cell were also higher at 20% O2. After day 5, c-Mpl (TPO receptor) generally followed similar kinetics as CD41a. The proportion of IL-3 receptor (IL-3R)++ Mks at day 5 was 1.5 times higher at 5% O2. The NMDAR1 protein previously known to be expressed by neuronal cells has recently been identified in Mks. NMDAR1 and the transcription factors were studied on days 6, 9, and 11. NMDAR1 was expressed at a 1.5- to 1.8-fold higher level at 5% O2. Twenty percent O2 supported higher expression of the Mk-early and -late-maturation-specific transcription factors GATA-1 (1.2- to 2.2-fold higher) and NF-E2 (1.1- to 2.8-fold higher). This was consistent with RT-PCR data indicating the presence of higher levels of GATA-1 and NF-E2 mRNA at 20% O2. E2F-1, a ubiquitously expressed cell cycle transcription factor, was expressed at a 1.5-fold higher level at 20% O2 on day 6, but this difference did not persist by day 9.

Conclusion: These findings demonstrate that cytokine receptors c-Mpl and IL-3R, and Mk differentiation-specific surface receptors CD41a, CD42a, and NMDAR1, are significantly modulated by pO2, and suggest that one of the mechanisms of enhanced maturation at 20% O2 may involve regulation of transcription factors GATA-1 and NF-E2.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Biomarkers
  • Cell Differentiation / physiology
  • Cell Lineage / physiology*
  • Cells, Cultured
  • Gene Expression Regulation / physiology*
  • Humans
  • Megakaryocytes / cytology*
  • Megakaryocytes / physiology*
  • Oxygen / physiology*
  • Receptors, Cytokine / physiology
  • Transcription Factors / physiology

Substances

  • Biomarkers
  • Receptors, Cytokine
  • Transcription Factors
  • Oxygen