Anaerobic cycling performance characteristics in prepubescent, adolescent and young adult females

Eur J Appl Physiol. 2001 May;84(5):476-81. doi: 10.1007/s004210100385.

Abstract

The purpose of this study was to determine whether the relationships between short-term power and body dimensions in young females were similar whatever the age of the individuals. A cohort of 189 prepubescent (mean age 9.5 years), adolescent (mean age 14.4 years) and young adult (mean age 18.2 years) females performed three all-out sprints on a friction-loaded cycle ergometer against three braking forces corresponding to applied loads of 25, 50 and 75 g.kg-1 body mass (BM). For each sprint, peak power including flywheel inertia was calculated. Results showed that a braking load of 75 g.kg-1 BM was too high for prepubescent and adolescent girls. Therefore, when measuring short-term cycling performance in heterogeneous female populations, a braking load of 50 g.kg-1 BM (0.495 N.kg-1 BM) is recommended. During growth, cycling peak power (CPP; defined as the highest peak power obtained during the three sprints) increased, as did total BM, fat-free mass (FFM) and lean leg volume (LLV) (P < 0.001). Analysis of covariance revealed that the slopes of the linear relationships between CPP and biometric characteristics were similar in the three groups (P > 0.7 for the CPP/BM and CPP/FFM relationships, and P > 0.2 for the CPP/LLV relationship). However, the adjusted means were always significantly higher in young women (P < 0.001) compared with both of the other groups. Although differences in performance during anaerobic cycling in growing females are primarily dependent upon body dimensions, other as yet undetermined factors may be involved during late adolescence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Aging / physiology*
  • Anaerobiosis
  • Bicycling / physiology*
  • Body Constitution
  • Body Weight
  • Child
  • Female
  • Humans
  • Leg / anatomy & histology
  • Organ Size
  • Puberty*
  • Thinness