Apical membrane of native OMCD(i) cells has nonselective cation channels

Am J Physiol Renal Physiol. 2001 Jul;281(1):F48-55. doi: 10.1152/ajprenal.2001.281.1.F48.

Abstract

The purpose of this study was to examine cation channel activity in the apical membrane of the outer medullary collecting duct of the inner stripe (OMCD(i)) using the patch-clamp technique. In freshly isolated and lumen-opened rabbit OMCD(i), we have observed a single channel conductance of 23.3 +/- 0.6 pS (n = 17) in cell-attached (c/a) patches with high KCl in the bath and in the pipette at room temperature. Channel open probability varied among patches from 0.06 +/- 0.01 at -60 mV (n = 5) to 0.31 +/- 0.04 at 60 mV (n = 6) and consistently increased upon membrane depolarization. In inside-out (i/o) patches with symmetrical KCl solutions, the channel conductance (22.8 +/- 0.8 pS; n = 10) was similar as in the c/a configuration. Substitution of the majority of Cl- with gluconate from KCl solution in the pipette and bath did not significantly alter reversal potential (E(rev)) or the channel conductance (19.7 +/- 1.1 pS in asymmetrical potassium gluconate, n = 4; 21.4 +/- 0.5 pS in symmetrical potassium gluconate, n = 3). Experiments with 10-fold lower KCl concentration in bath solution in i/o patches shifted E(rev) to near the E(rev) of K+. The estimated permeability of K+ vs. Cl- was over 10, and the conductance was 13.4 +/- 0.1 pS (n = 3). The channel did not discriminate between K+ and Na+, as evidenced by a lack of a shift in the E(rev) with different K+ and Na+ concentration solutions in i/o patches (n = 3). The current studies demonstrate the presence of cation channels in the apical membrane of native OMCD(i) cells that could participate in K+ secretion or Na+ absorption.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cations
  • Cell Membrane / metabolism
  • Cells, Cultured
  • Female
  • Ion Channels / analysis*
  • Kidney Medulla / metabolism*
  • Kidney Tubules, Collecting / metabolism*
  • Membrane Potentials
  • Patch-Clamp Techniques
  • Permeability
  • Potassium Chloride
  • Rabbits
  • Sodium Chloride

Substances

  • Cations
  • Ion Channels
  • Sodium Chloride
  • Potassium Chloride