Effect of aging on the substance P receptor, NK-1, in the spinal cord of rats with peripheral nerve injury

Somatosens Mot Res. 2001;18(1):66-75. doi: 10.1080/08990220020021366.

Abstract

Substance P (SP) levels in the spinal cords of very old rats are less than the levels in younger rats (Bergman et al., 1996). After injury to a peripheral nerve in young rats, immunoreactivity (ir) to the SP receptor, NK-1 (neurokinin-1), increases in the spinal cord ipsilateral to the injury and the increases are correlated with the development of thermal hyperalgesia (Goff et al., 1998). Thus we postulated that aged rats might display an increased sensitivity to thermal stimulation before peripheral nerve injury and that they might respond differently to injury than do younger rats. To test this hypothesis, we used the Bennett and Xie model (1988) of chronic constriction injury (CCI) to the sciatic nerve to induce a neuropathic pain condition. We investigated the effect of age on changes in NK-1 ir in superficial layers of the dorsal horn and on numbers of NK ir cells in deeper laminae at the L4-L5 levels of the spinal cord after CCI. NK-1 receptors were tagged immunohistochemically and their distribution quantified by use of computer-assisted image analysis. NK-1 ir changes were related to alterations in thermal and tactile sensitivity that developed after CCI in young, mature and aged (4-6, 14-16, and 24-26 months) Fischer F344 BNF1 hybrid rats. No differences in thermal or tactile sensitivity of young and aged rats were seen in the absence of nerve injury. After injury, aged rats developed thermal hyperalgesia and tactile allodynia more slowly than did the younger rats. NK-1 receptor ir and numbers of NK-1 ir cells in the dorsal horn increased with time post-injury in all three groups. NK-1 ir increases were correlated with the development of thermal hyperalgesia in those rats that displayed hyperalgesia. However, some rats developed an increased threshold to thermal stimuli (analgesia) and that also was correlated with increases in NK-1 ir. Thus NK-1 ir extent, while correlated with thermal sensitivity in the absence of injury, is not a specific marker for disturbances in one particular sensory modality; rather it increases with peripheral nerve injury per se.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aging / physiology*
  • Animals
  • Hot Temperature
  • Image Processing, Computer-Assisted
  • Immunohistochemistry
  • Peripheral Nerve Injuries*
  • Rats
  • Rats, Inbred BN
  • Rats, Inbred F344
  • Receptors, Neurokinin-1 / metabolism*
  • Spinal Cord / metabolism*
  • Thermosensing / physiology
  • Touch / physiology

Substances

  • Receptors, Neurokinin-1