Competition between normal [674C] and mutant [674R] subunits: role of the molecular chaperone BiP in the processing of GPIIb-IIIa complexes

Blood. 2001 May 1;97(9):2640-7. doi: 10.1182/blood.v97.9.2640.

Abstract

This work aimed at investigating the function of the [C674R] mutation in GPIIb that disrupts the intramolecular 674 to 687 disulfide bridge. Individuals heterozygous for this mutation show a platelet GPIIb-IIIa content approximately 30% of normal controls, which is less than expected from one normal functioning allele. Coexpression of normal [674C]GPIIb and mutant [674R]GPIIb with normal GPIIIa produced a [674R]GPIIb concentration-dependent inhibition of surface exposure of GPIIb-IIIa complexes in Chinese hamster ovary (CHO) cells, suggesting that [674R]GPIIb interferes with the association and/or intracellular trafficking of normal subunits. Mutation of either 674C or 687C had similar effects in reducing the surface exposure of GPIIb-IIIa. However, substitution of 674C for A produced a much lesser inhibition than R, suggesting that a positive-charged residue at that position renders a less efficient subunit conformation. The mutant [674R]GPIIb but not normal GPIIb was found associated with the endoplasmic reticulum chaperone BiP in transiently transfected CHO cells. BiP was also found associated with [674R]GPIIb-IIIa heterodimers, but not with normal GPIIIa or normal heterodimers. Overexpression of BiP did not increase the surface exposure of [674R]GPIIb-IIIa complexes, indicating that its availability was not a limiting step. Platelets from the thrombasthenic patient expressing [674R]GPIIb-IIIa were found to bind soluble fibrinogen in response to physiologic agonists or dithiothreitol treatment. Thus, the [674R]GPIIb mutation leads to a retardation of the secretory pathway, most likely related to its binding to the molecular chaperone BiP, with the result of a defective number of functional GPIIb-IIIa receptors in the cell surface.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Carrier Proteins / metabolism
  • Cricetinae
  • Endoplasmic Reticulum Chaperone BiP
  • Heat-Shock Proteins*
  • Humans
  • Molecular Chaperones / metabolism
  • Mutation
  • Platelet Activation
  • Platelet Glycoprotein GPIIb-IIIa Complex / chemistry
  • Platelet Glycoprotein GPIIb-IIIa Complex / genetics*
  • Platelet Glycoprotein GPIIb-IIIa Complex / metabolism*
  • Signal Transduction
  • Structure-Activity Relationship
  • Thrombasthenia / blood
  • Thrombasthenia / genetics

Substances

  • Carrier Proteins
  • Endoplasmic Reticulum Chaperone BiP
  • Heat-Shock Proteins
  • Molecular Chaperones
  • Platelet Glycoprotein GPIIb-IIIa Complex