Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering

Nature. 2001 Mar 29;410(6828):555-7. doi: 10.1038/35069013.

Abstract

'Space weathering' is the term applied to the darkening and reddening of planetary surface materials with time, along with the changes to the depths of absorption bands in their optical spectra. It has been invoked to explain the mismatched spectra of lunar rocks and regolith, and between those of asteroids and meteorites. The formation of nanophase iron particles on regolith grains as a result of micrometeorite impacts or irradiation by the solar wind has been proposed as the main cause of the change in the optical properties. But laboratory simulations have not revealed the presence of these particles, although nano-second-pulse laser irradiation did reproduce the optical changes. Here we report observations by transmission electron microscopy of olivine samples subjected to pulse laser irradiation. We find within the amorphous vapour-deposited rims of olivine grains nanophase iron particles similar to those observed in the rims of space-weathered lunar regolith grains. Reduction by hydrogen atoms implanted by the solar wind is therefore not necessary to form the particles. Moreover, the results support the idea that ordinary chondrites came from S-type asteroids, and thereby provides some constraints on the surface exposure ages of those asteroids.