PCR techniques for clonality assays

Diagn Mol Pathol. 2001 Mar;10(1):24-33. doi: 10.1097/00019606-200103000-00005.

Abstract

Clonal overgrowths represent the hallmark of neoplastic proliferations, and their demonstration has been proved useful clinically for the diagnosis of malignant lymphomas based on the detection of specific and dominant immunoglobulin and/or T-cell receptor gene rearrangements. Nonrandom genetic alterations can also be used to test clonal expansions and the clonal evolution of neoplasms, especially analyzing hypervariable deoxyribonucleic acid (DNA) regions from patients heterozygous for a given marker. These tests rely basically on the demonstration of loss of heterozygosity (LOH) resulting from either hemizygosity (nonrandom interstitial DNA deletions) or homozygosity of mutant alleles observed in neoplasms. LOH analyses identify clonal expansions of a tumor cell population, and point to monoclonal proliferation when multiple and consistent LOH are demonstrated. Based on the methylation-related inactivation of one X chromosome in female subjects, X-linked markers (e.g., androgen receptor gene) will provide clonality information using LOH analyses after DNA digestion with methylation-sensitive restriction endonucleases. Therefore, both non-X-linked and X-linked analyses give complementary information, related and not related to the malignant transformation pathway respectively. Applied appropriately, these tools can establish the clonal evolution of tumor cell populations (tumor heterogeneity), identify early relapses, distinguish recurrent tumors from other metachronic neoplasms, and differentiate field transformation from metastatic tumor growths in synchronic and histologically identical neoplasms.

Publication types

  • Review

MeSH terms

  • Clone Cells*
  • Female
  • Gene Rearrangement
  • Genetic Markers
  • Humans
  • Loss of Heterozygosity
  • Male
  • Microsatellite Repeats
  • Neoplasms / genetics*
  • Paraffin Embedding
  • Polymerase Chain Reaction / methods*
  • Reproducibility of Results
  • X Chromosome

Substances

  • Genetic Markers