Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings

Physiol Plant. 2001 Mar;111(3):373-380. doi: 10.1034/j.1399-3054.2001.1110315.x.

Abstract

Hypocotyl cuttings (from 20- and 50-day-old Pinus taeda L. seedlings) rooted readily within 30 days in response to exogenous auxin, while epicotyl cuttings (from 50-day-old seedlings) rarely formed roots within 60 days. Responses to auxin during adventitious rooting included the induction of cell reorganization and cell division, followed by the organization of the root meristem. Explants from the bases of both epicotyl and hypocotyl cuttings readily formed callus tissue in response to a variety of auxins, but did not organize root meristems. Auxin-induced cell division was observed in the cambial region within 4 days, and later spread to the outer cortex at the same rate in both tissues. Cells at locations that would normally form roots in foliated hypocotyl cuttings did not produce callus any differently than those in other parts of the cortex. Therefore, auxin-induced root meristem organization appeared to occur independently of auxin-induced cell reorganization/division. The observation that N-(1-naphthyl)phthalamic acid (NPA) promoted cellular reorganization and callus formation but delayed rooting implies the existence of an auxin signal transduction pathway that is specific to root meristem organization. Attempts to induce root formation in callus or explants without foliage were unsuccessful. Both the cotyledon and epicotyl foliage provided a light-dependent product other than auxin that promoted root meristem formation in hypocotyl cuttings.