Redox properties and acid-base equilibria of zucchini mavicyanin

J Inorg Biochem. 2001 Jan 15;83(2-3):223-7. doi: 10.1016/s0162-0134(00)00193-8.

Abstract

The reduction potential of mavicyanin isolated from zucchini peelings, which is a blue copper protein belonging to the subclass of the phytocyanins, has been determined through direct electrochemistry as a function of temperature and pH. The enthalpy and entropy changes accompanying protein reduction were found to be very similar with those determined previously for other phytocyanins and to differ remarkably from those of azurins and plastocyanins. This finding contributes to further characterize phytocyanins as a distinct cupredoxins family also on thermodynamic grounds and improves our understanding of how the reduction potential of these metal centers in proteins is modulated by coordinative and solvation properties. The E degrees' of mavicyanin is found to be sensitive to two acid-base equilibria at the extremes of pH. One occurs below pH 4, and is related to the protonation and detachment from the Cu(I) center of a histidine ligand. The other, observed above pH 8, causes a remarkable change in the electrostatic potential and/or the field strength around the copper.