Estimation of carotenoid bioavailability from fresh stir-fried vegetables using an in vitro digestion/Caco-2 cell culture model

J Nutr Biochem. 2000 Nov;11(11-12):574-580. doi: 10.1016/s0955-2863(00)00122-4.

Abstract

We previously developed an in vitro model to estimate the relative bioavailability of carotenoids from a meal prepared using commercial baby foods. The general applicability of this model was tested using a stir-fried meal consisting of fresh spinach, fresh carrots, tomato paste, and vegetable oil. After in vitro digestion of the cooked meal, the aqueous fraction was separated from residual oil droplet and solids by centrifugation to quantify micellarized carotenoids. The percentages of lutein, lycopene, alpha-carotene, and beta-carotene transferred from the meal to the micellar fraction were 29.0 +/- 0.6, 3.2 +/- 0.1, 14.7 +/- 0.3, and 16.0 +/- 0.4, respectively. Carotenoid transfer from the meal to the aqueous fraction was inhibited when bile extract was omitted from the intestinal phase of digestion. The bioavailability of the micellarized carotenoids was validated using differentiated cultures of Caco-2 human intestinal cells. All four carotenoids were accumulated in a linear manner throughout a 6-hr incubation period. Metabolic integrity was not compromised by exposure of cultures to the diluted aqueous fraction from the digested meal. The addition of 500 µmol/L alpha-tocopherol to test medium significantly improved the stability of the micellar carotenoids within the tissue culture environment. These results support the utility of the in vitro digestion procedure for estimating the bioavailability of carotenoids from foods and meals.