Multistep synthesis of 2,5-diketopiperazines on different solid supports monitored by high resolution magic angle spinning NMR spectroscopy

J Comb Chem. 2000 Nov-Dec;2(6):681-90. doi: 10.1021/cc0000489.

Abstract

The solid-phase synthesis of 2,5-diketopiperazines containing the trans-4-hydroxy-L-proline amino acid residue (Hyp) was performed on Ellman polystyrene, polyoxyethylene-polyoxypropylene (POEPOP), polystyrene-polyoxyethylene NovaSyn, and Wang resins, respectively. The reaction pathway allowed the introduction of different functional groups around the bicyclic scaffold in a combinatorial approach, and it generated mixtures of isomers. A detailed characterization of the single reaction steps by high resolution magic angle spinning (HRMAS) NMR spectroscopy was performed. The NMR spectral resolution of the resin-bound intermediates and final products was greatly influenced by the polymer matrix. The POEPOP resin permitted to obtain HRMAS NMR spectra with a resolution comparable with that of the spectra of the molecules in solution. Moreover, configurational and conformational isomers formed during the solid-phase reaction steps could be detected and easily assigned. Therefore, the combination of the HRMAS NMR technique with the use of nonaromatic resins may become an extremely powerful tool in solid-phase organic synthesis. This approach will allow the monitoring of multistep reactions and the conception of on-bead structural studies either on small molecules or on natural and/or synthetic oligomers.