Inhibition of cell migration by 24-kDa fibroblast growth factor-2 is dependent upon the estrogen receptor

J Biol Chem. 2001 Feb 9;276(6):3963-70. doi: 10.1074/jbc.M004868200. Epub 2000 Nov 16.

Abstract

The single-copy gene for fibroblast growth factor-2 (FGF-2) encodes for multiple forms of the protein with molecular masses of 24, 22.5, 22, and 18 kDa. We reported previously that the 24-22-kDa FGF-2 forms inhibit the migration of endothelial and MCF-7 cells by 50% and 70%, respectively. Here we show that this inhibition of migration is mediated by the estrogen receptor (ER). We have found that depletion of the receptor in either cell line abrogates the inhibitory activity of 24-kDa FGF-2 while re-introduction of the ER into deficient cells once again promotes the inhibitory response. To determine whether exposure to 24-kDa FGF-2 resulted in the activation of the estrogen receptor, 3T3 cells were cotransfected with estrogen receptor cDNA and an estrogen regulatory element-luciferase gene reporter construct and treated with 24- and 18-kDa FGF-2. The high molecular weight form stimulated luciferase activity 5-fold while 18-kDa FGF-2 at the same concentration had no effect. Treatment of ER-positive MCF-7 cells transfected with the reporter construct only showed the same results. Inclusion of the pure estrogen antagonist ICI 182,780 blocked the increase in luciferase activity by 24-kDa FGF-2, further indicating that the response was estrogen receptor dependent. Expression of dominant negative FGF receptor 1 inhibited ER activation, indicating that this was the cell surface receptor mediating the effect. Although growth factor-dependent activation of the ER was reported to require mitogen-activated protein kinase-induced phosphorylation at Ser(118) in COS and HeLa cells, this mechanism is not involved with the activation by 24-kDa FGF-2. These results suggest that the addition of 55 amino acids to the amino-terminal end of 18-kDa FGF-2 by alternative translation alters FGF-2 function and allows for the activation of a second signaling pathway involving the estrogen receptor.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3T3 Cells
  • Animals
  • COS Cells
  • Cell Movement / physiology*
  • Fibroblast Growth Factor 2 / physiology*
  • HeLa Cells
  • Humans
  • Mice
  • Receptors, Estrogen / chemistry
  • Receptors, Estrogen / metabolism
  • Receptors, Estrogen / physiology*
  • Tumor Cells, Cultured

Substances

  • Receptors, Estrogen
  • Fibroblast Growth Factor 2