Development and dynamics of Pseudomonas sp. biofilms

J Bacteriol. 2000 Nov;182(22):6482-9. doi: 10.1128/JB.182.22.6482-6489.2000.

Abstract

Pseudomonas sp. strain B13 and Pseudomonas putida OUS82 were genetically tagged with the green fluorescent protein and the Discosoma sp. red fluorescent protein, and the development and dynamics occurring in flow chamber-grown two-colored monospecies or mixed-species biofilms were investigated by the use of confocal scanning laser microscopy. Separate red or green fluorescent microcolonies were formed initially, suggesting that the initial small microcolonies were formed simply by growth of substratum attached cells and not by cell aggregation. Red fluorescent microcolonies containing a few green fluorescent cells and green fluorescent microcolonies containing a few red fluorescent cells were frequently observed in both monospecies and two-species biofilms, suggesting that the bacteria moved between the microcolonies. Rapid movement of P. putida OUS82 bacteria inside microcolonies was observed before a transition from compact microcolonies to loose irregularly shaped protruding structures occurred. Experiments involving a nonflagellated P. putida OUS82 mutant suggested that the movements between and inside microcolonies were flagellum driven. The results are discussed in relation to the prevailing hypothesis that biofilm bacteria are in a physiological state different from planktonic bacteria.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biofilms / growth & development*
  • DNA Transposable Elements / genetics
  • Green Fluorescent Proteins
  • Luminescent Proteins / genetics
  • Microscopy, Confocal
  • Molecular Sequence Data
  • Pseudomonas / genetics
  • Pseudomonas / physiology*
  • Pseudomonas / ultrastructure
  • Pseudomonas putida / physiology
  • Pseudomonas putida / ultrastructure
  • Red Fluorescent Protein

Substances

  • DNA Transposable Elements
  • Luminescent Proteins
  • Green Fluorescent Proteins

Associated data

  • GENBANK/AF295532
  • GENBANK/AF295533