The impact of Pu speciation on distribution coefficients in Mayak soil

Sci Total Environ. 2000 Aug 10;257(2-3):81-93. doi: 10.1016/s0048-9697(00)00443-5.

Abstract

To assess the long-term consequences when radionuclides are released into the environment, information on the source term, transport and transformation processes, interaction with soils (KD) and biological uptake (CF) is needed. Among the artificial radionuclides released to the environment by nuclear activities, the transuranium elements are a major concern, due to very long half-lives and their accumulation in bone as well as high radiotoxicity. Plutonium has been produced in greater quantity than other transuranic elements, however, environmental assessments are complicated by the complex environmental behaviour. Physico-chemical forms of Pu will determine the interactions with soils and, thus, the degree to which soils can act as a sink or a potential diffuse source of contaminants. In the present work, dynamic tracer experiments have been performed where different Pu-species are added to a 'Mayak soil-rainwater system' to obtain information on KD values. After a defined contact time, the samples where then sequentially extracted and results are used in a dynamic box model to estimate interaction and fixation rates. The interaction of all Pu-species with soils seems to be rapid and follows a two-step reaction. Up to contact times of a few weeks, the KD for Pu(III,IV) (730 +/- 240 l/kg) is approximately one order of magnitude higher than for Pu(V,VI) (90 +/- 20 l/kg) and Pu(III,IV)-organic (40-60 l/kg). After 3 months contact time, the KD in only the two organic-bound Pu-species were significantly lower. This shows that the initial association with the soil is dependent on the Pu-species in the rainwater. After only 1 h of contact, between 33 and 40% of the plutonium was strongly bound to the soil components, i.e. only extractable with strong HNO3. The extraction of soil-bound Pu followed a similar pattern for all the original species, suggesting that the next step of Pu interaction mechanism with soil was rather independent of the original species. For both the Pu(V,VI) and Pu-organic species, the rainwater-desorption extract gave consistently higher KD values than that calculated from the rainwater-sorption data; whereas for Pu(III,IV), desorption KD values were more similar to sorption KD values. This supports the suggestion that the observed difference in Pu adsorption to soils reflects Pu-speciation in the water soluble phase, and that actual soil-Pu interactions are rather independent of the original speciation. Modelling of the extraction data show a different in association rate for the different Pu species, where the Pu(III,IV) has the fastest association rate as expected.

MeSH terms

  • Absorption
  • Hydrogen-Ion Concentration
  • Hydrolysis
  • Models, Theoretical
  • Oxidation-Reduction
  • Plutonium / pharmacokinetics*
  • Soil Pollutants / pharmacokinetics*

Substances

  • Soil Pollutants
  • Plutonium