Molecular overexpression of extracellular superoxide dismutase increases the dependency of learning and memory performance on motivational state

Behav Genet. 2000 Mar;30(2):95-100. doi: 10.1023/a:1001947003299.

Abstract

Extracellular superoxide dismutase (EC-SOD) controls the availability of extracellular superoxide and appears to play a role in controlling intercellular signaling. In this role EC-SOD can have potent effects on neurobehavioral function. In previous studies, we have found that either over- or under-expression of EC-SOD in mice significantly impairs spatial learning on the radial-arm maze. In the current study, the neurobehavioral nature of the EC-SOD role in cognitive function was determined. EC-SOD overexpression altered the relationship between both learning and memory with motivational state. Mice were tested in the radial-arm maze under a high motivational state (22-24 hours of food restriction) or a low motivational state (4-6 hours of food restriction). Under a high motivational state, the EC-SOD overexpressing mice were able to learn in the radial-arm maze, albeit at a slightly lower rate than wild-type controls. This contrasts with the failure to learn by EC-SOD overexpressing mice in our previous study conducted with the low motivational state. The change in motivational state did not significantly alter the learning rate of controls. Similarly, during postacquisition memory phase of testing, the EC-SOD overexpressing mice were significantly worse than controls when tested in a low motivational state but not under a high motivation state. As with learning, motivational state did not significantly affect memory performance in controls. This study shows that mice with EC-SOD overexpression are not incapable of learning and memory in the radial-arm maze, but that the mechanisms which allow control animals to perform this task well under low motivational states are deficient in the mice with EC-SOD overexpression.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Appetitive Behavior / physiology*
  • Extracellular Space / enzymology
  • Female
  • Food Deprivation
  • Gene Expression Regulation, Enzymologic / physiology
  • Maze Learning / physiology*
  • Mental Recall / physiology*
  • Mice
  • Motivation*
  • Superoxide Dismutase / genetics*

Substances

  • Superoxide Dismutase