Generation and functional analysis of distinct macrophage sub-populations from goldfish (Carassius auratus L.) kidney leukocyte cultures

Fish Shellfish Immunol. 2000 Jan;10(1):1-20. doi: 10.1006/fsim.1999.0221.

Abstract

Three distinct sub-populations of macrophages derived from goldfish kidney leukocyte cultures were generated and characterised. The sub-populations designated as R1, R2 and R3-type macrophages had distinct morphological, cytochemical and flow cytometric profiles, and also differed in their anti-microbial functions after activation with macrophage activation factors (MAF) and bacterial lipopolysaccharide (LPS). The R1-type macrophages were small cells that contained acid phosphatase, but lacked myeloperoxidase and non-specific esterase. The R2-type macrophages were morphologically similar to mature tissue macrophages of mammals, and were positive for acid phosphatase, myeloperoxidase and non-specific esterase. The R3-type macrophages were round cells with eccentrically placed nuclei and resembled mammalian monocytes. This sub-population stained for acid phosphatase, myeloperoxidase and non-specific esterase. The R2 and R3-type macrophages exhibited distinct functional responses after activation with MAF and/or LPS. R2-type macrophages were potent producers of nitric oxide, while R3-type macrophages produced little or no nitric oxide after activation with MAF and LPS. The R2 and R3-type macrophages also exhibited unique respiratory burst responses (ROI) after treatment with MAF and/or LPS. After treatment with MAF and LPS, activated R2 macrophages were primed for ROI after only 6 h of stimulation with the activating agents, and continued to exhibit a strong ROI response for an extended cultivation period (48 h). In contrast, activated R3-type macrophages showed an early ROI response (6 h after treatment with MAF and LPS), which decreased significantly by 48 h after treatment with the activating agents. Our results suggest that the analysis of the mechanisms of induction of fish anti-microbial responses may be dependent upon the concerted actions of functionally distinct macrophage sub-populations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Separation / veterinary
  • Cells, Cultured
  • Culture Media, Conditioned
  • Flow Cytometry / veterinary
  • Goldfish / anatomy & histology*
  • Kidney / cytology*
  • Leukocytes / cytology*
  • Macrophages / physiology*

Substances

  • Culture Media, Conditioned