Advances in mobile intraoperative magnetic resonance imaging

Neurosurgery. 2000 Jul;47(1):131-7; discussion 137-8. doi: 10.1097/00006123-200007000-00028.

Abstract

Objective: The goal was to enhance a mobile magnetic resonance imaging system developed for neurosurgery. Components of the system included an actively shielded, 1.5-T superconducting magnet, a titanium operating room table, a radiofrequency (RF) head coil that could be disassembled, and local RF shielding.

Methods: The system was designed and implemented by the Division of Neurosurgery, University of Calgary (Calgary, Alberta, Canada), in collaboration with the National Research Council of Canada Institute for Biodiagnostics (Winnipeg, Manitoba, Canada). The ceiling-mounted, 1.5-T magnet was moved into and out of the surgical field as required. After initial success in monitoring the resection of various intracranial and cranial base lesions, significant modifications to the system were made by Innovative Magnetic Resonance Imaging Systems, Inc. (Winnipeg, Manitoba, Canada), and BrainLAB (Heimstetten, Germany). These modifications included the design and construction of a shorter magnet with a larger bore and stronger gradients, widening of the titanium operating room table, modification of the RF coil housing to allow vertical movement and incorporation of a three-pin head-clamp, construction of a transparent, copper-impregnated RF shield, and integration with a surgical navigation system.

Results: The movable intraoperative imaging system has now been used for 101 neurosurgical procedures, including the previously reported cases.

Conclusion: The modifications to the system have enhanced its integration with established neurosurgical techniques and have improved patient safety. The larger magnet bore size, together with the ability to move the RF coil vertically, allows placement of patients in prone or lateral positions. Surgical navigation has been successfully integrated with the intraoperatively acquired high-resolution images. The ability to identify and resect residual lesions before wound closure remains a tremendous immediate advantage of this technology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Equipment Design
  • Female
  • Humans
  • Intraoperative Care / instrumentation*
  • Magnetic Resonance Imaging / instrumentation*
  • Male
  • Middle Aged
  • Neurosurgical Procedures / instrumentation*