Tyrosine phosphatase SHP-1 immunoreactivity increases in a subset of astrocytes following deafferentation of the chicken auditory brainstem

J Comp Neurol. 2000 May 29;421(2):199-214.

Abstract

Proliferation of astrocytes is a dramatic response of the central nervous system (CNS) to injury and disease. Such proliferation results in the formation of the neural/glial scar and the reconstitution of the glial limitans. However, not all astrocytes enter the proliferative cycle following injury, and for those that do, the period of cell division is limited. Little attention has focused on the events that regulate the duration and extent of astrocyte proliferation following damage, but clearly control mechanisms are in place as CNS injury does not result in the continuous astrocyte proliferation seen in glial tumorigenesis. Protein tyrosine phosphorylation has been implicated in both astrocyte proliferation and differentiation and plays an important role in the regulation of the cell cycle in a number of different systems. We have found a small subset of astrocytes in the chick auditory brainstem that are immunopositive for the protein tyrosine phosphatase SHP-1. SHP-1 appears to negatively regulate cellular division in the hematopoietic system and is involved in the mitogenic response to various growth factors. Following cochlea removal, there is a marked increase within the auditory brainstem nucleus, nucleus magnocellularis (NM), in both in the number of SHP-1-positive astrocytes and the length of their immunopositive fibers. Significantly, those animals showing the greatest increases in SHP-1 immunoreactivity do not exhibit large amounts of astrocyte proliferation. We hypothesize that the expression of SHP-1 plays a role in negatively regulating the mitotic behavior of astrocytes following deafferentation.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Astrocytes / cytology
  • Astrocytes / metabolism*
  • Brain Stem / metabolism*
  • Cell Division
  • Chickens / metabolism*
  • Cochlea / injuries
  • Denervation
  • Glial Fibrillary Acidic Protein / metabolism*
  • Intracellular Signaling Peptides and Proteins
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6
  • Protein Tyrosine Phosphatases / metabolism*

Substances

  • Glial Fibrillary Acidic Protein
  • Intracellular Signaling Peptides and Proteins
  • Protein Tyrosine Phosphatase, Non-Receptor Type 11
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6
  • Protein Tyrosine Phosphatases