Qualitative assessment of natural apatite in vitro and in vivo

J Biomed Mater Res. 2000;53(3):227-34. doi: 10.1002/(sici)1097-4636(2000)53:3<227::aid-jbm7>3.0.co;2-e.

Abstract

Among the natural and synthetic materials investigated as bone graft substitutes, much interest has been focused on natural apatite obtained from low temperature heat-deproteinated compact bone. Previous research demonstrates that, when treated at a temperature below 500 degrees C, this material maintains its characteristic ultrastructural features, with a high surface/volume ratio, while as an implant material, it offers the host tissue a large surface of interaction. In vitro and in vivo tests showed that natural apatite is well tolerated and is a good osteoconducing material. The present in vivo study in rabbits was carried out to first investigate the behavior and capacity of natural apatite implants to stimulate bone ingrowth, and then to analyze the cells located at the bone/material interface. Synthetic hydroxyapatite was used as a control material. In a parallel in vitro study, we investigated the activity of differentiated osteoblasts and periosteal cells obtained from rats and new-born rabbits, incubated with natural apatite and synthetic hydroxyapatite. The in vivo study showed that natural apatite allows osteoblasts to form new bone tissue, adhering to the implant with ingrowth into the implant structure. In the presence of synthetic hydroxyapatite, a less pronounced osteoblastic activity was observed. In agreement with these observations, the in vitro study showed that natural apatite is more effective in attracting cells, favoring their proliferation and stimulating alkaline phosphatase activity. These findings suggest that natural apatite is more suitable for bone filling or bone regeneration than synthetic hydroxyapatite.

MeSH terms

  • Animals
  • Apatites*
  • Bone Remodeling*
  • Bone Substitutes*
  • Rabbits
  • Rats

Substances

  • Apatites
  • Bone Substitutes