Frequent occurrence of pre-existing alpha 2-->8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins. Prevalence revealed by highly sensitive chemical methods and anti-di-, oligo-, and poly-Sia antibodies specific for defined chain lengths

J Biol Chem. 2000 May 19;275(20):15422-31. doi: 10.1074/jbc.275.20.15422.

Abstract

The pre-existence of alpha2-->8-linked disialic acid (di-Sia) and oligosialic acid (oligo-Sia) structures with up to 7 Sia residues was shown to occur on a large number of brain glycoproteins, including neural cell adhesion molecules (N-CAMs), by two highly sensitive chemical methods (Sato, C., Inoue, S., Matsuda, T., and Kitajima, K. (1998) Anal. Biochem. 261, 191-197; Sato, C., Inoue, S., Matsuda, T., and Kitajima, K. (1999) Anal. Biochem. 266, 102-109). This unexpected finding was also confirmed using a newly developed antibody prepared using a copolymer of alpha2-->8-linked N-acetylneuraminyl p-vinylbenzylamide and acrylamide as an immunogen and known antibodies whose immunospecificities were determined to be di- and oligo-Sia residues with defined chain lengths. The major significance of the new finding that di- and oligo-Sia chains exist on a large number of brain glycoproteins is 2-fold. First, it reveals a surprising diversity in the number and M(r) of proteins distinct from N-CAM that are covalently modified by these short sialyl glycotopes. Second, it suggests that synthesis of di- and/or oligo-Sia units may be catalyzed by alpha2-->8-sialyltransferase(s) that are distinct from the known polysialyltransferases, STX and PST, which are partially responsible for polysialylation of N-CAM.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antibodies, Monoclonal
  • Brain Chemistry*
  • Disaccharides / analysis*
  • Disaccharides / chemistry
  • Embryo, Mammalian
  • Glycoproteins / chemistry*
  • Guinea Pigs
  • Neural Cell Adhesion Molecules / chemistry
  • Oligosaccharides / analysis*
  • Oligosaccharides / chemistry
  • Sialic Acids / analysis*
  • Swine

Substances

  • Antibodies, Monoclonal
  • Disaccharides
  • Glycoproteins
  • Neural Cell Adhesion Molecules
  • Oligosaccharides
  • Sialic Acids