An alpha-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenylcarboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercarboxylates

Appl Environ Microbiol. 2000 May;66(5):1911-6. doi: 10.1128/AEM.66.5.1911-1916.2000.

Abstract

The surfactant linear alkylbenzenesulfonate (LAS; 0.5 mM) or linear monoalkyldiphenyletherdisulfonate (LADPEDS; 0.5 mM) in salts medium was easily degraded in laboratory trickling filters, whereas carbon-limited, aerobic enrichment cultures in suspended culture with the same inocula did not grow. We took portions of the trickling filters which degraded LADPEDS, shook the organisms from the solid support (polyester), and found that growth in suspended culture in LADPEDS-salts medium occurred only in the presence of some solid support (polyester fleece or glass wool), though little biomass was immobilized on the support. The end products in suspended culture were identical with those from the trickling filters. There was low plating efficiency of LADPEDS-grown cultures on complex medium, and no picked colony or mixture of colonies grew in LADPEDS-salts-glass wool medium. However, selective plates containing LADPEDS-salts medium solidified with agarose yielded LADPEDS-dependent, pinpoint colonies which could be picked singly and subcultured in selective liquid medium. Isolate DS-1 was a bacterium which showed 93% sequence homology (16S ribosomal DNA) to its nearest phylogenetic neighbor, an alpha-proteobacterium. Strain DS-1 grew heterotrophically in LADPEDS-salts-glass wool medium and converted the set of aryl-substituted alkanes to the corresponding aryl-substituted carboxylic acids of shorter chain length. Similarly, strain DS-1 grew heterotrophically with commercial LAS, converting it to a set of sulfophenylcarboxylates. Growth with a single isomer of LAS [3-(4-sulfophenyl)dodecane] was concomitant with excretion of 4-(4-sulfophenyl)hexanoate, which was identified by matrix-assisted laser desorption ionization mass spectrometry. The growth yield (6.4 g of protein/mol of C) indicated mass balance, which, with the specific growth rate (0.05 h(-1)), indicated a specific utilization rate of LAS of 2.2 mkat/kg of protein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alphaproteobacteria / growth & development
  • Alphaproteobacteria / metabolism*
  • Benzenesulfonates / metabolism*
  • Biodegradation, Environmental
  • Carboxylic Acids / metabolism
  • Kinetics
  • Phenyl Ethers / metabolism*
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Surface-Active Agents / metabolism*

Substances

  • Benzenesulfonates
  • Carboxylic Acids
  • Phenyl Ethers
  • Surface-Active Agents