Anaerobic degradation of fluorinated aromatic compounds

Appl Microbiol Biotechnol. 2000 Mar;53(3):342-7. doi: 10.1007/s002530050032.

Abstract

Anaerobic enrichment cultures with sediment from an intertidal strait as inoculum were established under denitrifying, sulfate-reducing, iron-reducing and methanogenic conditions to examine the biodegradation of mono-fluorophenol and mono-fluorobenzoate isomers. Both phenol and benzoate were utilized within 2-6 weeks under all electron-accepting conditions. However, no degradation of the fluorophenols was observed within 1 year under any of the anaerobic conditions tested. Under denitrifying conditions, 2-fluorobenzoate and 4-fluorobenzoate were depleted within 84 days and 28 days, respectively. No loss of 3-fluorobenzoate was observed. All three fluorobenzoate isomers were recalcitrant under sulfate-reducing, iron-reducing, and methanogenic conditions. The degradation of the fluorobenzoate isomers under denitrifying conditions was examined in more detail using soils and sediments from different geographic regions around the world. Stable enrichment cultures were obtained on 2-fluorobenzoate or 4-fluorobenzoate with inoculum from most sites. Fluoride was released stoichiometrically, and nitrate reduction corresponded to the values predicted for oxidation of fluorobenzoate to CO2 coupled to denitrification. The 2-fluorobenzoate-utilizing and 4-fluorobenzoate-utilizing cultures were specific for fluorobenzoates and did not utilize other halogenated (chloro-, bromo-, iodo-) benzoic acids. Two denitrifying strains were isolated that utilized 2-fluorobenzoate and 4-fluorobenzoate as growth substrates. Preliminary characterization indicated that the strains were closely related to Pseudomonas stutzeri.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anaerobiosis
  • Biodegradation, Environmental
  • Culture Media
  • Fluorobenzenes / metabolism
  • Geologic Sediments / microbiology*
  • Hydrocarbons, Fluorinated / metabolism*
  • Phenols / metabolism
  • Pseudomonas / classification*
  • Pseudomonas / isolation & purification*
  • Pseudomonas / metabolism
  • Soil Microbiology
  • Substrate Specificity
  • Water Microbiology*

Substances

  • Culture Media
  • Fluorobenzenes
  • Hydrocarbons, Fluorinated
  • Phenols