Conserved Ca2+-antagonist-binding properties and putative folding structure of a recombinant high-affinity dihydropyridine-binding domain

Biochem J. 2000 May 1;347 Pt 3(Pt 3):829-36.

Abstract

Sensitivity to 1,4-dihydropyridines (DHPs) can be transferred from L-type (alpha1C) to non-L-type (alpha1A) Ca(2+) channel alpha1 subunits by the mutation of nine pore-associated non-conserved amino acid residues, yielding mutant alpha1A(DHP). To determine whether the hallmarks of reversible DHP binding to L-type Ca(2+) channels (nanomolar dissociation constants, stereoselectivity and modulation by other chemical classes of Ca(2+) antagonist drugs) were maintained in alpha1A(DHP), we analysed the pharmacological properties of (+)-[(3)H]isradipine-labelled alpha1A(DHP) Ca(2+) channels after heterologous expression. Binding of (+)-isradipine (K(i) 7.4 nM) and the non-benzoxadiazole DHPs nifedipine (K(i) 86 nM), (+/-)-nitrendipine (K(i) 33 nM) and (+/-)-nimodipine (K(i) 67 nM) to alpha1A(DHP) occurred at low nanomolar K(i) values. DHP binding was highly stereoselective [25-fold higher affinity for (+)-isradipine]. As with native channels it was stimulated by (+)-cis-diltiazem, (+)-tetrandrine and mibefradil. This suggested that the three-dimensional architecture of the channel pore was maintained within the non-L-type alpha1A subunit. To predict the three-dimensional arrangement of the DHP-binding residues we exploited the X-ray structure of a recently crystallized bacterial K(+) channel (KcsA) as a template. Our model is based on the assumption that the Ca(2+) channel S5 and S6 segments closely resemble the KcsA transmembrane folding architecture. In the absence of three-dimensional structural data for the alpha1 subunit this is currently the most reasonable approach for modelling this drug-interaction domain. Our model predicts that the previously identified DHP-binding residues form a binding pocket large enough to co-ordinate a single DHP molecule. It also implies that the four homologous Ca(2+) channel repeats are arranged in a clockwise manner.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution / genetics*
  • Animals
  • Bacterial Proteins*
  • Binding Sites
  • Calcium Channel Blockers / metabolism*
  • Calcium Channels / chemistry*
  • Calcium Channels / genetics
  • Calcium Channels / metabolism*
  • Calcium Channels, L-Type / chemistry
  • Calcium Channels, L-Type / genetics
  • Calcium Channels, L-Type / metabolism
  • Cell Line
  • Cell Membrane / metabolism
  • Dihydropyridines / metabolism*
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Potassium Channels / chemistry
  • Protein Binding
  • Protein Folding*
  • Protein Structure, Tertiary
  • Rabbits
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Sequence Alignment
  • Stereoisomerism
  • Substrate Specificity
  • Thermodynamics

Substances

  • Bacterial Proteins
  • Calcium Channel Blockers
  • Calcium Channels
  • Calcium Channels, L-Type
  • Dihydropyridines
  • Potassium Channels
  • Recombinant Fusion Proteins
  • prokaryotic potassium channel
  • 1,4-dihydropyridine