Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry

J Mass Spectrom. 2000 Mar;35(3):347-53. doi: 10.1002/(SICI)1096-9888(200003)35:3<347::AID-JMS941>3.0.CO;2-3.

Abstract

Glucosylceramide (GluCer) is a major sphingolipid of plant tissue and, thus, abundant in nature and in dietary food sources. The lipid backbones of mammalian GluCer (sphingosine, d18:1(delta4), and ceramide) induce cell death (apoptosis) and inhibit colon carcinogenesis, it is critical to know the structures of GluCer present in plants as a first step toward understanding this potential link between diet and cancer. This study characterized the molecular species of GluCer from soybean and wheat by low-resolution, high-resolution and tandem mass spectrometry. Soybean GluCer was comprised primarily (>95%) of ceramide with 4,8-sphingadiene (d18:2(delta4,delta8)) and alpha-hydroxypalmitic acid (h16:0); the remainder had the same backbone with h18:0, h20:0, h22:0 and h24:0 fatty acids. Wheat GluCer had three major ceramide, d18:2(delta4,delta8) with h16:0, d18:1(delta8) with h16:0 and d18: 2(delta4,delta8) with h20:0, and smaller amounts of other homologs. These backbones differ from those of mammalian sphingolipids, which often have a delta4-double bond (but rarely a delta8-double bond), and have alpha-hydroxy fatty acids in only some cases. Previously unexplained fragmentations that were diagnostic for the type of sphingoid base backbone (i.e. by homolytic cleavage of the doubly allylic C-6-C-7 bond to yield a stable distonic allylic radical cation and an allylic radical neutral) were also identified. Hence this method should be useful in the identification of double bonds in sphingolipids, and structure-function relationships between sphingolipids and colon carcinogenesis.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Glucosylceramides / chemistry*
  • Glycine max / chemistry
  • Molecular Structure
  • Spectrometry, Mass, Fast Atom Bombardment / methods*
  • Triticum / chemistry

Substances

  • Glucosylceramides