Passive nitrate transport by root plasma membrane vesicles exhibits an acidic optimal pH like the H(+)-ATPase

Plant Physiol. 2000 Jan;122(1):265-74. doi: 10.1104/pp.122.1.265.

Abstract

The net initial passive flux (J(Ni)) in reconstituted plasma membrane (PM) vesicles from maize (Zea mays) root cells was measured as recently described (P. Pouliquin, J.-P. Grouzis, R. Gibrat ¿1999 Biophys J 76: 360-373). J(Ni) in control liposomes responded to membrane potential or to NO(3)(-) as expected from the Goldman-Hodgkin-Katz diffusion theory. J(Ni) in reconstituted PM vesicles exhibited an additional component (J(Nif)), which was saturable (K(m) for NO(3)(-) approximately 3 mM, with J(Nifmax) corresponding to 60 x 10(-9) mol m(-2) s(-1) at the native PM level) and selective (NO(3)(-) = ClO(3)(-) > Br(-) > Cl(-) = NO(2)(-); relative fluxes at 5 mM: 1:0.34:0.19). J(Nif) was totally inhibited by La(3+) and the arginine reagent phenylglyoxal. J(Nif) was voltage dependent, with an optimum voltage at 105 mV at pH 6.5. The activation energy of J(Nif) was high (129 kJ mol(-1)), close to that of the H(+)-ATPase (155 kJ mol(-1)), and J(Nif) displayed the same acidic optimal pH (pH 6.5) as that of the H(+) pump. This is the first example, to our knowledge, of a secondary transport at the plant PM with such a feature. Several properties of the NO(3)(-) uniport seem poorly compatible with that reported for plant anion channels and to be attributable instead to a classical carrier. The physiological relevance of these findings is suggested.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Transport
  • Cell Membrane / metabolism
  • Coated Vesicles / metabolism*
  • Hydrogen-Ion Concentration
  • Nitrates / metabolism*
  • Plant Roots / metabolism*
  • Zea mays / metabolism*

Substances

  • Nitrates