Fire and resprouting in Mediterranean ecosystems: insights from an external biogeographical region, the mexical shrubland

Am J Bot. 1999 Dec;86(12):1655-61.

Abstract

We investigated modes of regeneration of dominant species of the mexical vegetation after fire. The mexical shrubland shows a remarkable structural, morphological, and floristic similarity to Mediterranean-type vegetation and is considered a relict of the Madro-Tertiary Geoflora under a non-Mediterranean climate. This vegetation provides an ideal scenario to test the role of fire in Mediterranean ecosystems because historical fire occurrence is absent and the species assembly is constituted mostly by Madro-Tertiary elements and Neotropical species (some of them, endemic species from Mexico). The existence of congeneric species of the California chaparral allows us to determine the regeneration ability of these communities after fire in relation to resprouting and seeding strategies, which are widespread modes reported in the Mediterranean-type vegetation. By the experimental application of fire in the two biogeographical groups of species, we tested the hypothesis that low resprouting ability of California congeneric species (Madro-Tertiary species) after fire would indicate that fire has played an important selective force in the resprouting habit. A low resprouting ability in the Neotropical group of species would suggest that fire has molded the set of species dominating fire-prone environments.Our results indicated that resprouting is a widespread trait in the mexical species characterized by the presence of lignotubers and burls. Resprouting can be considered an ancient trait, probably linked to losses of aboveground biomass, that became a pre-adaptation in Mediterranean fire-prone communities. The Neotropical group of species showed less ability to regenerate after fire, and small plants were more likely to die after disturbance in this group than in the Madro-Tertiary group. The resprouting feature and the seeder strategy of other species after a fire in the mexical shrubland are similar to Mediterranean-type ecosystems, emphasizing their common origin and the relevance of phylogenetic and biogeographical studies to explain current patterns of vegetation.