Acousto-optical deflection-based laser beam scanning for fluorescence detection on multichannel electrophoretic microchips

Anal Chem. 1999 Dec 1;71(23):5309-14. doi: 10.1021/ac990740u.

Abstract

Laser beam scanning driven by an acousto-optical deflector (AOD) is presented for multimicrochannel laser-induced fluorescence (LIF) detection during microchip-based electrophoresis. While fast laser beam scanning for LIF detection on capillary or microchannel arrays can been achieved with galvanometric scanning or a translating stage, it can also be accomplished by using acoustic waves to deflect the laser beam in a manner that is dependent on the acoustic frequency. AOD scanning differs from other approaches in that no moving parts are required, and the scan frequency is faster than conventional approaches. Using a digital/analog (D/A) converter to provide addressing voltages to a voltage/frequency converter, rapidly changing the frequency input to the AOD allows the laser beam to be addressed accurately on a microchip. With the ability to change the frequency on the nanosecond time scale, scanning rates as high as 30 Hz for Windows-based LabView programming are possible, with much faster scan rates achievable if a microprocessor-embedded system is utilized. In addition to spatial control, temporal control is easily attainable via raster scanning or random addressing, allowing for the scanning process to be self-aligning. Since the D/A output voltages drive the scanning of the laser beam over all channels, the software can define addressing voltages corresponding to the microchannel centers and, subsequently, fluorescence data can be collected from only those locations. This method allows for flexible, high-speed, self-align scanning for fluorescence detection in capillary or microchip electrophoresis and has the potential to be applied to a number of applications.

MeSH terms

  • Acoustics
  • Electrophoresis / instrumentation*
  • Electrophoresis / methods
  • Lasers
  • Optics and Photonics
  • Semiconductors
  • Spectrometry, Fluorescence / methods*