The magnitude of decrease in hepatic very low density lipoprotein apolipoprotein B secretion is determined by the extent of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibition in miniature pigs

Endocrinology. 1999 Nov;140(11):5293-302. doi: 10.1210/endo.140.11.7150.

Abstract

It has been postulated that the rate of hepatic very low density lipoprotein (VLDL) apolipoprotein (apo) B secretion is dependent upon the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. To test this hypothesis in vivo, apoB kinetic studies were carried out in miniature pigs before and after 21 days treatment with high-dose (10 mg/kg/day), atorvastatin (A) or simvastatin (S) (n = 5). Pigs were fed a diet containing fat (34% of calories) and cholesterol (400 mg/day; 0.1%). Statin treatment decreased plasma total cholesterol [31 (A) vs. 20% (S)] and low density lipoprotein (LDL) cholesterol concentrations [42 (A) vs. 24% (S)]. Significant reductions in plasma total triglyceride (46%) and VLDL triglyceride (50%) concentrations were only observed with (A). Autologous [131I]VLDL, [125I]LDL, and [3H]leucine were injected simultaneously, and apoB kinetic parameters were determined by triple-isotope multicompartmental analysis using SAAM II. Statin treatment decreased the VLDL apoB pool size [49 (A) vs. 24% (S)] and the hepatic VLDL apoB secretion rate [50 (A) vs. 33% (S)], with no change in the fractional catabolic rate (FCR). LDL apoB pool size decreased [39 (A) vs. 26% (S)], due to reductions in both the total LDL apoB production rate [30 (A) vs. 21% (S)] and LDL direct synthesis [32 (A) vs. 23% (S)]. A significant increase in the LDL apoB FCR (15%) was only seen with (A). Neither plasma VLDL nor LDL lipoprotein compositions were significantly altered. Hepatic HMG-CoA reductase was inhibited to a greater extent with (A), when compared with (S), as evidenced by 1) a greater induction in hepatic mRNA abundances for HMG-CoA reductase (105%) and the LDL receptor (40%) (both P < 0.05); and 2) a greater decrease in hepatic free (9%) and esterified cholesterol (25%) (both P < 0.05). We conclude that both (A) and (S) decrease hepatic VLDL apoB secretion, in vivo, but that the magnitude is determined by the extent of HMG-CoA reductase inhibition.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apolipoproteins B / metabolism*
  • Atorvastatin
  • Cholesterol / blood
  • Cholesterol, LDL / blood
  • Heptanoic Acids / pharmacology
  • Hydroxymethylglutaryl CoA Reductases / metabolism*
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / pharmacology*
  • Kinetics
  • Lipoproteins / blood
  • Lipoproteins, IDL
  • Lipoproteins, LDL / administration & dosage
  • Lipoproteins, LDL / blood
  • Lipoproteins, VLDL / administration & dosage
  • Lipoproteins, VLDL / blood
  • Lipoproteins, VLDL / metabolism*
  • Liver / enzymology
  • Liver / metabolism*
  • Microsomes, Liver / enzymology
  • Pyrroles / pharmacology
  • Simvastatin / pharmacology
  • Swine
  • Swine, Miniature
  • Triglycerides / blood

Substances

  • Apolipoproteins B
  • Cholesterol, LDL
  • Heptanoic Acids
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors
  • Lipoproteins
  • Lipoproteins, IDL
  • Lipoproteins, LDL
  • Lipoproteins, VLDL
  • Pyrroles
  • Triglycerides
  • Cholesterol
  • Atorvastatin
  • Simvastatin
  • Hydroxymethylglutaryl CoA Reductases